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ABM Modeling Process Overview 
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Sources for Parameter Estimates 

• Surveillance data 

• Controlled trials 

• Outbreak data 

• Clinical reports data 

• Intervention  
outcomes studies 

• Calibration to historic 
data 

• Expert judgement 

• Metaanalyses 

 

 

Anderson & May 



Sensitivity Analyses 
• Same relative or absolute uncertainty in 

different parameters may have hugely 
different effect on outcomes or decisions 

• Help identify parameters that strongly affect 

– Key model results 

– Choice between policies 

• We place more emphasis in parameter 
estimation into parameters exhibiting high 
sensitivity 

 



Dealing with Data Gradients 
• Often we don’t have reliable information on some 

parameters, but do have other data 
– Often have data on emergent behavior of system – doesn’t 

relate to any one parameter, but a combination influences 

– Some parameters may not be observable, but some closely 
related observable data is available 

– Sometimes the data doesn’t have the detailed breakdown 
needed to specifically address one parameter 
• Available data could specify sum of a bunch of flows or stocks 

• Available data could specify some function of several quantities in 
the model (e.g. prevalence)  

• Some parameters may implicitly capture a large set of 
factors not explicitly represented in model 

• There are two big ways of dealing with this:  manually 
“backing out”, and automated calibration 

 



Recall: Single Model Matches Many Data Sources 

 

one of  



“Backing Out” 

• Sometimes we can manually take several 
aggregate pieces of data, and use them to 
collectively figure out what more detailed data 
might be 

• Frequently this process involves imposing some 
(sometimes quite strong) assumptions 
– Combining data from different epidemiological 

contexts (national data used for provincial study) 

– Equilibrium assumptions (e.g. assumes stock is in 
equilibrium – deriving prevalence from incidence) 

– Independence of factors (e.g. two different risk 
factors convey independent risks) 

 



Example 

• Suppose we seek to find out the sex-specific prevalence 
of diabetes in some population 

• Suppose we know from published sources 
– The breakdown of the population by sex (cM, cF) 

– The population-wide prevalence of diabetes (pT) 

– The prevalence rate ratio of diabetes in women when 
compared to men (rrF) 

• We can “back out” the sex-specific prevalence from 
these aggregate data (pF, pM) 

• Here we can do this “backing out” without imposing 
assumptions 



Backing Out 

 # male diabetics + # female diabetics = # diabetics 

 (pM* cM)                  +        (pF* cF)            = pT*(cM+cF) 

• Further, we know that pF / pM =rrF  pF = pM * rrF 

• Thus 

 (pM* cM)     +   ((pM * rrF)* cF)            = pT*(cM+cF) 

 pM*(cM + rrF* cF) = pT*(cM+cF) 

• Thus 

– pM = pT*(cM+cF) / (cM + rrF* cF) 

– pF = pM * rrF = rrF * pT*(cM+cF) / (cM + rrF* cF) 



Disadvantages of “Backing Out” 

• Backing out often involves questionable 
assumptions (independence, equilibrium, etc.) 

• Sometimes a model is complex, with several 
related known pieces 

– Even thought we may know a lot of pieces of 
information, it would be extremely complex (or 
involve too many assumptions) to try to back out 
several pieces simultaneously 

 

 



Another Example: Joint & Marginal 
Prevalence 

Rural Urban 

Male pMR pMU pM 

Female pFR pMU pF 

pR pU 

Perhaps we know  
•The count of people in each { Sex, Geographic } category 
•Each marginal prevalence (pR, pU , pM , pF) 

 
We need at least one more constraint  (one possibility: assume pMR / pMU = pR / pU ) 
We can then derive the prevalence in each { Sex, Geographic } category 
 
  
 



Calibration: “Triangulating” from Diverse 
Data Sources 

• Calibration involves “tuning” values of less well 
known parameters to best match observed data 
– Often try to match against many time series or pieces of 

data at once 

– Idea is trying to get the software to answer the question:  
“What must these (less known) parameters be in order 
to explain all these different sources of data I see” 

• Observed data can correspond to complex 
combination of model variables, and exhibit 
“emergence” 

• Frequently we learn from this that our model 
structure just can’t produce the patterns! 

 



Calibration 
• Calibration helps us find a reasonable 

(specifics for)  “dynamic hypothesis” that 
explains the observed data 

– Not necessarily the truth, but probably a 
reasonably good guess – at the least, a consistent 
guess 

• Calibration helps us leverage the large 
amounts of diffuse information we may have 
at our disposal, but which cannot be used to 
directly parameterize the model 

• Calibration helps us falsify models 

 



Calibration: A Bit of the How 

• Calibration uses a (global) optimization algorithm 
to try to adjust unknown parameters so that it 
automatically matches an arbitrarily large set of 
data 

• The data (often in the form of time series) forms 
constraints on the calibration 

• The optimization algorithm will run the model 
many (thousands or more) times to find the 
“best” match for all of the data 

 



Required Information for Calibration 
• Specification of what to match (and how much to 

care about each attempted match) 

– Involves an “error function” ( “penalty function”, “energy 
function”) that specifies “how far off we are” for a given 
run (how good the fit is) 

– Alternative: specify “payoff function” (“objective 
function”) 

• A statement of what parameters to vary, and over 
what range to vary them (the “parameter space”) 

• Characteristics of desired optimization (tuning) 
algorithm  

– e.g. Single starting point of search? 

 



Envisioning “Parameter Space” 

 

β 

μ 

τ 

For each point in this space, there 

will be a certain “goodness of fit” 

of the model to the collective data 

 



Assessing Model “Goodness of Fit” 

• To improve the “goodness of fit” of the model to 
observed data, we need to provide some way of 
quantifying it! 

• Within the model, we  

– For each historic data, calculate discrepancy of model 

• Figure out absolute value of discrepancy from comparing 

– Historic Data 

– The model’s calculations 

• Convert the above to a fractional value (dividing by historic 
data) 

– Sum up these discrepancy 



Characteristics of a  
Desirable Discrepancy Metric 

• Dimensionless:  We wish to be able to add discrepancies 
together, regardless of the domain of origin of the data 

• Weighted:  Reflecting different pedigrees of data, we’d like to 
be able to weigh some matches more highly than others 

• Analytic: We should be able to differentiate the function one 
or more times 

• Concave: Two small discrepancies of size a should be 
considered more desirable than having one big discrepancy of 
size 2a for one, and no discrepancy at all for the other.  

• Symmetric: Being off by a factor of two should have the same 
weight regardless of whether we are 2x or ½x 

• Non-negative: No discrepancy should cancel out others! 

• Finite: Finite inputs should yield finite discrepancies 

 



A Good Discrepancy Function 
(Assuming non-negative h & m) 
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Only zero if h=m=0.   
Denominator is only very small if numerator is as well! 
 

Exponent 

>1  concave with respect to h-m 

Division  Dimensionless  
(Judging by proportional error, not absolute) 

Taking average in denominator (together w/squaring 
of result) ensures symmetry with respect to h&m 



Considerations for Weighting 

• Purpose of model:  If we “care” more about a 
match with respect to some variables, we can more 
heavily weight matches for those variables 

• Uncertainty in estimate:  The more uncertain the 
estimate of the quantity, the lower the weight 

• Whether data exists: no data => weight should be 
zero 



Example (Simplistic) Global 
Optimization Algorithm 

• Starts at random position, tries to improve match 
(minimize error) by  

– Adjusting parameters 

– Running Model 

– Recording error function 

• Keeps on improving until reaches “local minimum” 
in error of fit  

– May add some randomness to knock out of local minima 

 

 

Many more sophisticated “global optimization” algorithms are 
available and can improve the outcome & speed of optimization 
(e.g. genetic algorithms, swarm-based methods) 
 



 
 
 
 

Hands on Model Use Ahead 
 
 
 
 

Load Sample Model:  
SIR Agent Based Calibration 

(Via “Sample Models” under “Help” Menu) 



An Optimization Experiment in AnyLogic 

Stops after 500 
optimization 
iterations 

Varying these  
parameters 

Stops after best 
objective ceases 
to significantly 
improve  
Caveat Modelor: 
May prematurely 
terminate the 
optimization 



An Optimization Experiment in AnyLogic 
Using Built-in Difference Function 

A built-in objective function  
(euclidean distance) 



Finding the Definition 



An Optimization Experiment in AnyLogic 
with a custom difference function 

Varying these parameters 

Custom distance  
function 



Defining a Payoff Function 
Caveat: Here, Non-Analytic, Non-Concave 

Computing absolute discrepancy  
Between historic & model values at  
specific point (index i) during realization 
 



Historic Data Captured via Table Function 

How to  
interpolate  
(“fill in”) 
between data 
points 
 



Populating a Dataset with Historic Data 

Populating the  
dataset from 
the previously  
defined table 
function 



Stochastics in Agent-Based Models 
• Recall that ABMs typically exhibit significant 

stochastics 

– Event timing within & outside of agents 

– Inter-agent interactions 

• When calibrating an ABM, we wish to avoid 
attributing a good match to a particular set of 
parameter values simply due to chance  

• To reliably assess fit of a given set of parameters, 
we need to repeatedly run model realizations 

– We can take the mean fit of these realizations 

 

 



Recall: Important Distinction 
(Declining Order of Aggregation) 

• Experiment 

– Collection of simulations 

• Simulation 

– Collection of replications that can yield findings 
across set of replications (e.g. mean value) 

• Replication 

– One run of the model  



Populating the Appropriate Datasets 

Populates historic data 
up front from table fn 

Retaining the 
Current value 
After the realization 
(Simulation run) 

If this is the best iteration, 
saves away the results 

These datasets are 
within the experiment  
Persist beyond the 
                    simulation 



Running Calibration in AnyLogic 

Best payoff  (objective) 
yet reached  
(lower is better) 

Values  of parameters 
being calibrated 
at best calibration  
thus far 



Optimization Constraints – Tests on 
Legitimacy of Parameter Values 



Optimization Requirements – Tests to 
Sense Validity of Emergent Results 



Enabling Multiple Realizations 
(“Replications”,”Runs”) per Iteration 



Fixed Number of Replications per Iteration 

Specifies stopping Condition  
once minimum replications have  
been run.  Indicates that the  
X% confidence interval around the  
mean is within “Error percent” of 
the iteration mean obtained as  
of the most recent replication 
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After 5 replications After 10 replications 
After 40 replications 
Terminates 

x% (e.g. 80%) 
confidence  
interval for sample 
mean (average) of  
replications 
to this point 

Minimum and maximum 
Observed values from 
replications 

Bars showing that 
delineating values within 
errorPercent% of mean 

Terminates because 
confidence interval 
falls within 
errorPercent% bars 



Automatic Throttling of Replications Based on 
Empirical Fractiles for the Average of the Differences 

between Best and Current 



Enabling Random Variation Between 
Realizations (“Replications”) 



Understanding Replications:  
Report Results for Each Replication! 



During First Several Realizations 
(“Replications”, “Runs”), No Results Appear 



Report on Iteration 1 Appears after a Count 
of Runs Equal to Replications per Iteration 

Reports best payoff   
(objective) 
yet reached  
(lower is better), 
 but from where  
did this number 
Come? 
 



Output 

The reported payoff for the iteration is the  
average of the  payoffs for each replication  
within the replication 



Average of Results for Replications is 
the Reported Score for the Iteration! 



Considerations 

• Adding constraints helps increase 
identifiability (selection of realistic best fit) 

• Adding parameters to tune leads to larger 
space to explore 

• Adding too many parameters to tune can lead 
to underdetermined situation 

• All fits are within constraints of model 

 



Dealing with Calibration Problems: 
Experiments 

• Try to “outsmart” calibration 

– Adopt best parameter values from calibration 

– Try to adjust parameters to do better than calibration 

• If is better, it may be that the parameter space is too large, or 
that the range constraints are too tight 

• Typically this does not do as well: Opportunity to learn 
– Model not respond in the way that anticipated to parameter change 

– May just shift the discrepancy from one variable to another 

» Assumptions of model structure/values may not permit both 
variables to simultaneously match well! 

• Set very high weight on thing that want to match, 
and see other matches 

• Set all other weights to 0 (see if can possibly match) 

 



Dealing with Calibration Problems: 
Additional Experiments 

• Increase parameter range 

• Increase # of parameters 

• Examine impact of changed model structure 

• Run for larger number of optimization runs 

• Find other estimates for uncertain parameters 

 

 



Important Cross-Checks: Uniqueness 

• Are the calibration values Unique? If so, good; if not, 

– Do they give the same underlying interpretation? 

– Do the different interpretations lead to parameters that 
“trade off” in some structured way?  

• Ways of addressing significantly different 
interpretations 

– Collect more primary data! 

– Impose additional constraints (in terms of time series, 
etc.) 

– Simplify model 

– Find other estimates for uncertain parameters 



Important Cross-Checks:   
Binding Constants 

• Look for calibrated parameter values that are 
at the edges of their permissible ranges 

– If “best” value is at the edge of the range, it may 
be that even better calibrations would have been 
possible if continuing in that direction 

• To deal with those at the edge 

– Relax constraints 

– Collect more data on plausible values 

– Question model structure 

 



Capturing Parameter 
Interdependencies in Calibration 

• If we want parameter B adjusted during calibration to 
be at least as big as parameter A 
– In vensim, we can’t enforce this constraint using the typical 

calibration machinery, because the range limits for 
parameters must be constants 

– we can accomplish this by calibrating only parameter A, and 
a parameter representing the ratio B/A. 

• If we want to adjust two or more parameters such that 
they still sum to 1 (e.g. fraction of initial population in 
each of n or more stocks), we can adjust each of n non-
normalized weights, and then take the corresponding 
normalized amount to be frac. falling in that category 



Calibrating Initial Conditions 

• The initial conditions can be one of the best 
values to calibrate 

• Sometimes need to divide a fixed population 
into several stocks 

 



Calibration & Regression:  
Similarities & Differences 

• Model calibration is similar to regression in that we 
are seeking to find the parameter values allowing 
the best match of model & data 
– As in non-linear regression, for non-linear simulation 

models no “closed form” solution of best parameter 
values is possible  optimization is required 

• A big difference:   
– Regression models: the “functional form”  (dependence 

of model output on par’ms/indep vars) is given explicitly 

– Simulation models: behavior is only implicitly specified 
(e.g. via giving differentials); model output is a complex 
resultant (even emergent) property of structure 


